
1

 Sematic Segmentation based Building Façade Recognition

 Project Report

 Group 13
 Noor Ul Ain,

 Tapani Honkanen,

 Topias Harjunpää,

 Samu Syrjänen,

 Zihao Li

 May 4, 2024

 UNIVERSITY OF HELSINKI

2

 n based on semantic segmentation

 Table of Contents

1. Introduction ... 3

2. Technical Approach .. 3

2.1 Tools and Infrastructure .. 3

2.2 Data Processing ... 3

2.3 Hierarchical filtering... 4

2.3.1 Number of Stories .. 4

2.3.2 Feature Counting ... 5

2.3.3 Feature Color ... 6

2.3.4 Text Match.. 7

2.3.5 Roof Shape .. 8

2.3.6 Building Texture .. 8

2.4 User localization .. 9

3. Results .. 11

3.1 Cropped Images .. 11

3.2 Distorted Images ... 12

4. Conclusion ... 13

5. Grading .. 14

6. Appendix .. 15

6.1 Building texture figures .. 15

6.2 Local Binary Pattern Algorithm .. 16

3

1. Introduction
Augmented Reality (AR) is a rapidly expanding field, recognizing and interacting with real-world

structure with ease is critical in AR applications. This project sets out to transform urban interaction

through AR with primary focus on building façade recognition and user viewpoint localization. The

typical solution for these challenges is to recognize the features from the images, match recognized feature

positions and wrap the image accordingly. But the drawback of utilizing visual features is that they are

not robust to variations in weather, time of day and seasons, additionally it requires sending the entire

image to the backend to extract features. To avoid these problems, we have used semantic segmentation-

based matching in which we utilized the semantic features (windows, balconies, doors) of building façade

and template matching for building recognition. This technique can reduce the reliance of the application

on backend services as the data base of any visited area can be easily stored on the front end device as

the amount of data is minimal (only semantic information is required). Additionally, this solution is

robust to seasonal and weather changes because the visual features change depending on these factors,

but the semantic features are not affected by these factors.

The goal of this project is to design an algorithm for recognizing building façade using hierarchical

filtering and user viewpoint localization, with the primary focus on accuracy and secondary consideration

for speed. In the first iteration of the project, we applied individual filters to recognize the building façade

and evaluated those filters. After that we used hierarchical filtering to reduce the search space as fast as

possible by applying these filters in a particular order. These filters utilize sematic features such as number

of stories, number of balconies, number of windows/doors, wall/door color, roof shape, optical characters

and building texture. After reducing the search space our aim was to develop a user viewpoint localization

algorithm for recognizing the correct building façade.

2. Technical Approach
This section provides the details of the tools and methods we have used in our project.

2.1 Tools and Infrastructure

 Programming Language: Python

 Libraries: OpenCV, Matplotlib, Numpy, PaddleOCR

 Data Visualization and Analysis: Jupyter Notebooks

 Version Control System: Git, with GitHub as the remote repository

2.2 Data Processing

The dataset consists of two publicly available datasets of 139 image pairs consisting of original

image and sematic segmented image. The first data set is eTRIMS and the second dataset is

ParisArtDecoFacadesDataset. Semantic segmentation categorizes each pixel into a class such as

window, door, balcony, wall, road, or sky. To standardize the dataset, we have extracted each

feature into a separate mask. We also cropped the images into quarters and distorted them by

flattening to evaluate our algorithm for its robustness. Figure 1 shows the image pair in the data

set, image quarter and the mask holding the label “window”.

https://www.ipb.uni-bonn.de/projects/etrims_db/
https://github.com/raghudeep/ParisArtDecoFacadesDataset/tree/master

4

 Figure 1 a. Original Image b. Annotated Image c. Image Quarter d. Mask holding window label

2.3 Hierarchical filtering

In hierarchical filtering, we apply a series of filters on the query image to narrow down the search space.

The filters are arranged based on their individual performance in terms of both accuracy and speed.

Beginning with the first filter, we provide the query image along with the entire dataset as input. The

filter then produces a reduced dataset, retaining only the most promising images. This refined dataset is

subsequently passed to the next filter along with the original query image. Each filter aims to include the

best-matched image in the reduced dataset. In this way our algorithm reduces the search space by passing

query images through all the filters. The reduced data set is then used for localizing user viewpoint in the

query image to find the best match image in the reduced dataset. Applying hierarchical filtering before

localizing user viewpoint reduces the dataset for finding the correct image using user localization

algorithm. User viewpoint localization algorithm is time consuming as compared to the individual filters.

Figure 2 shows the overview of our algorithm. The algorithm and evaluation of each filter is outlined in

this section.

2.3.1 Number of Stories

Figure 2 Overview of Facade Recognition Algorithm

The filter works by counting the number of stories in a building and operates as follows: First, the number

of stories is calculated by finding the maximum number of windows bounding boxes that simultaneously

intersect with a vertical line as it moves horizontally across the image. Candidates with fewer stories than

those in the query image are then removed from consideration.

The method is very efficient because the same window bounding boxes can be reused by the feature-

counting filter, and collisions with axis-aligned bounding boxes can be detected by simple comparisons.

It filters many of the same candidates as feature counting, so the improvement in filtering efficiency is

minimal. The overall performance gain is around 0.2 %. However, the method is worth including because

5

it achieves perfect accuracy (100%) on cropped images and has a minimal impact on the execution time

(approximately one millisecond). As with some other methods, the filter relies on accurate semantic

segmentation, which could affect its real-life performance. As future work, the filter could be made stricter

if it is possible to confirm that the image contains a complete vertical slice of the building.

2.3.2 Feature Counting

The primary objective of feature count filtering is to efficiently eliminate any building facades that do not

match the number of characteristics of a given query image. For example, if a query image contains 10

windows and 2 balconies, only facades with at least these numbers of features should be considered; those

with fewer can be confidently excluded.

This filtering method utilizes counts of stable features, which are less likely to change over time, including

windows, doors, balconies, shops, and vegetation. For each feature, feature counting involves the

following steps: The algorithm receives a feature mask as input, which is extracted from the semantically

segmented annotations during preprocessing. Features are then quantified by identifying the bounding

boxes within the feature mask and calculating their counts. This process is facilitated by using the OpenCV

Contour Features and is illustrated at left side image in Figure 3.

During the initial visualization, it was identified that some features, such as windows, were often fully or

partially obscured by obstacles like trees. This fragmentation led the feature count operation to report

artificially high counts. To address this issue, a morphological operation was applied to the feature mask

using a sufficiently large kernel. This process helped consolidate the fragmented features back into a single

entity. Although the solution is not perfect, its primary goal is to prevent the computation of additional

feature counts, reducing the risk of incorrectly filtering out the correct facade. The second issue was related

to counting the number of vegetation instances. Due to the irregular shapes of vegetation, such as trees,

there was a risk that a single piece of vegetation could be split into multiple distinct annotated areas in the

query image. This could inadvertently lead to the exclusion of the correct facade. To resolve this, we

decided to implement a binary check to determine the presence of vegetation, rather than counting the

individual instances.

Figure 3. The left side image illustrates the process of window counting. Right side plot shows distribution of remaining

candidates after feature count filtering.

As an outcome, feature-based filtering operates with good efficiency, taking approximately 1 millisecond

per run and achieving 100% accuracy in our testing settings, meaning it never incorrectly filters out the

correct label from the list of remaining candidates. On average, this method reduces the list of candidates

by about 50%. However, its effectiveness heavily depends on the features present in the query image. The

https://docs.opencv.org/4.x/dd/d49/tutorial_py_contour_features.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html

6

left-side plot in the Figure 3 illustrates the distribution of remaining candidates for each of the 556 query

images tested.

2.3.3 Feature Color

Filtering based on feature color involved focused on filtering the images based on the similarity of the

feature color of test image and the images in the data set. We have used wall color and door color of the

buildings in this filter. Filtering based on feature color included following steps:

1. Extracted the average feature color (wall and door) using the mask holding the label “building”

and “door” and stored these colors.

2. Passed the query image and extracted the average feature color (wall or door) of all the images to

the filter.

3. Extracted the feature color (door or window) of the query image.

4. Calculated the Euclidean distance between the average color of query image and all the images in

the data set.

5. Normalized and sorted the Euclidean distances. In the first iteration of the algorithm, the filter gave

the sorted Euclidean distances as the output. The best match image had the minimum Euclidean

distance. At this point we evaluated this filter first using the original images in the data set as query

image. Table 1 shows the evaluation of this filter.

Metric Wall Color Door Color

Accuracy 100% 90%

Average Execution Time ~13 msec ~12 msec

 Table 1. Evaluation metric of Filtering based on feature color using original image as query image

After that we evaluated this algorithm for cropped images as query image to check the robustness

of the algorithm. The accuracy for the image quarter dropped significantly both for wall color and

door color because the average wall color of cropped image was notably different from average

wall color of full image Additionally, there were cropped images having no door at all or have half

door. But this algorithm was still useful for reducing the data set.

6. In the second iteration we adjusted our algorithm for hierarchical filtering. In this updated filter a

threshold was applied to normalized Euclidean distances. This process involved filtering out

images from the dataset whose Euclidean distances exceeded the predefined threshold. The

resulting dataset, consisting of only those images that met the threshold criteria, was then provided

as the output of the filter. We adjusted the threshold for door color and wall color in such a way

that the correct image is always present in the reduced dataset. Figure 4 shows the effect of

threshold on accuracy, we used threshold of 0.63 and 0.88 for wall color and door color,

respectively.

7

Figure 4. The plot of Accuracy, number of remaining candidates after filtering (Maximum and Minimum) for wall color on
Left side and door color on Right side.

2.3.4 Text Match

Text matching in images involves identifying and comparing text extracted from various images to

determine similarities or exact matches. This process is crucial for applications where textual content

within images needs to be cross-referenced or verified against a database or other images. Following are

the details of text matching algorithm.

1. Text Detection and Recognition: Utilize PaddleOCR to perform Optical Character Recognition

(OCR) on all images in the dataset. Each image's detected text is then stored in a JSON file. This file

acts as a reference database for future text comparisons.

2. Extracting Text from New Images: When a new image is input, run OCR to extract the text. This

OCR process converts image-based text into a searchable text format.

3. Loading the Database: Load the JSON file containing the OCR results from previously processed

images. This JSON structure is crucial as it allows quick access to pre-analyzed text data, facilitating

efficient searches.

4. Searching for Matches: Compare the text extracted from the new image against the texts stored in

the JSON file. Implement a text comparison algorithm that can recognize similar or identical text

strings. Techniques such as substring searches, Levenshtein distance, or more sophisticated natural

language processing (NLP) methods can be used to determine textual similarities.

5. Output Results: List images whose text content matches or closely resembles the text in the new

image. This step involves sorting or ranking images based on the degree of text match to prioritize

more relevant results.

We evaluated the text matching system's performance based on metrics such as accuracy and execution

time details are given in Table 2.

Metric Original 10 degrees rotation 15 degrees rotation

Average Execution Time 0.1178 s 0.1817 s 0.1545 s

Accuracy 85.71% 75.00% 71.43%

 Table 2. Evaluation of text matching for original and rotated images

To refine our matching technique and focus on the most relevant aspects of urban imagery, we explored

the possibility of image matching that specifically targets the building portions of images. This approach

was aimed at minimizing the influence of extraneous elements, such as pavement signage, which do not

contribute meaningfully to building recognition.

The technique involved segmenting the images to isolate building facades before applying our matching

algorithm. However, a significant limitation was observed with this approach. Our dataset primarily

consists of images where the buildings have minimal textual content. Despite the limitations within our

8

dataset, this method holds promise for real-world applications. In a practical setting, where buildings may

have more distinct and text-rich facades, this targeted approach could effectively enhance the relevance

and accuracy of image matching systems.

2.3.5 Roof Shape

We have tried a couple of ways to use the building shape to filter out candidates. The first approach was

to try the simplest possible solution. The OpenCV library includes a shape-matching functionality based

on Hu Moments, which are a set of seven numbers that capture characteristics of a shape. The first six Hu

Moments are known to be invariant to translation, rotation, and scale. We tested the shape-matching

algorithm on various targets and identified the contour between the sky and the building masks as the most

promising option. This contour is less likely to be obscured by other objects. However, the shape-matching

algorithm struggled with partial matches, resulting in inferior performance on cropped images.

Our final approach is to extract the contour between the sky and the building and then simplify it using

Ramer-Douglas-Peucker algorithm with an epsilon value of 0.01. We filter candidates based on the

number of points in the simplified contour. All candidates with a point count within a certain tolerance

are included in the filtered dataset. The basic idea is to differentiate flat roofs from more complex roof

shapes. As shown in the histogram in Figure 5(Left), the point count differences between original and

cropped images suggests that a threshold of 2 is sufficient to achieve high accuracy (> 99%) with our

dataset. This threshold is also strict enough to effectively filter out candidates as we can deduct from the

vertex count distribution (see Figure5 Right). The average execution time for the filter is approximately

40 milliseconds.

Figure 5: Left is the histogram of differences in the number of vertices between the original image and

cropped images, Right side is the distribution of number of vertices in the simplified roof contours

An additional observation is that the annotations around the edges of different classifications are messy,

leading to unreliable edge extraction. To address this, the edges needed cleaning. We tried various

approaches, but the most effective one involves iteratively copying the classification of the top-left pixel

to any unclassified pixels. This method is both performant and reasonably accurate in practice.

2.3.6 Building Texture

Building texture can be analyzed and compared with other images to select the best matches. We

decided to use the Local Binary Pattern (LBP) algorithm for the texture analysis. LBP is considered a

lightweight texture analysis algorithm, which could be used in real time.

https://en.wikipedia.org/wiki/Image_moment
https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm

9

The general implementation of our texture analysis algorithm is described in the following steps:

1. First a binary pattern is assigned to every pixel in the image. The appendix Figure 1 and

appendix Figure 2 show this process. The center pixel's value is compared with each surrounding

pixel to generate a binary number, or a binary pattern. The number of surrounding pixels

considered for each center pixel, and the radius of the surrounding pixels is determined by the

algorithm parameters. From the generated binary patterns, we can get information about the

positions and frequencies of edge, flat, and corner areas, as shown in the appendix figure 2.

2. The normalized frequency (or sum) of each possible binary pattern in the image is then converted

into a histogram, which shows the normalized frequency of each unique binary pattern on y-axis,

and all the unique binary patterns on x-axis. An example is shown in appendix Figure 3 about a

brick wall.

3. After calculating the LBP images and histograms, we can compare the similarity of each histogram

from different images to find the best matches. This is done with Kullback–Leibler divergence,

which gives a similarity score for two different histograms.

Our implementation of LBP algorithm uses “uniform” method to calculate the unique binary patterns. It

means that the starting point of the calculated binary number does not matter when considering its

'uniqueness’ only the pattern’s order of content matters. This minimizes the impact of image rotation in

matching. The functionality of the “uniform” is described in detail in Scikit-Image's documentation of

the local binary pattern.

An example LBP image generated from our dataset can be seen in appendix Figure 4. Unlike in the

example appendix Figure 3, we include the entire facade area which consists of building, window, and

door masks. Other masks such as road or foliage are not considered in the texture analysis (shown as

black areas in the example). Including the entire facade area increased the accuracy of the algorithm, but

simultaneously increased the running time.

The main parameters for Scikit-Image's local binary pattern algorithm include the radius of the

surrounding pixels (say R), and the number of surrounding pixels considered for each center pixel (say

P). For P, we carried out an optimization process which maximized the accuracy of the algorithm as its

first criterion and minimized the running time as its second criterion. For R, the optimization process was

more difficult since the resolution of the dataset images had some variability. The solution was to anchor

the R value to the width of the windows found in the images. Example is shown on appendix figure 5.

This way the R value would always be standard to the real-world scale in the images. The R parameter

was optimized similarly as P, but because of the scale standardization, used window width as its unit (for

example: 0.5 = half a window). More information about the LBP algorithm can be found in the links

shared in Appendix 6.2.

2.4 User localization

The user localization task serves two functions in the final algorithm. Firstly, it determines the user's point

of view using template matching. Secondly, it employs the similarity score output from this process to

identify the correct label among all remaining candidates from the hierarchical filtering. The primary

challenge in the user localization was enhancing its efficiency to enable real-time operation on local

https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.local_binary_pattern
https://scikit-image.org/docs/stable/api/skimage.feature.html#skimage.feature.local_binary_pattern

10

devices. Additionally, the template matching process was designed to utilize only annotations, thus

eliminating the need to transmit original images to the frontend.

Figure 6: Two distinct outputs from the user localization process. The point of view from the rescaled query image is

overlaid on top of the corresponding training image, and a similarity score is computed to assess the match.

Our client had implemented an initial solution for window-based template matching, and our task was to

enhance its computational efficiency. This approach involved individually rescaling the query image to

match the size of each window in the training image. The rescaled query image is then overlaid on top of

the training image, and a similarity score is computed for the overlaid area between the training and query

images. Figure 6 illustrates two different outcomes of the user localization process. The left-side image

pair represents a correct match, successfully identifying the correct facade and accurately localizing the

user's point of view. The right-side image pair depicts a scenario where the correct facade is not included

in the set of training images. To enhance template matching efficiency, we implemented two modifications

to the existing approach. Firstly, we leveraged feature counting by computing similarity scores between

overlaid images only when their window counts matched, reducing the number of iterations required.

Secondly, we initially computed the resized query region to determine the overlaying area for the training

image, but we refrained from resizing the query image in advance. This strategy allowed us to first

compare window counts and subsequently resize only when necessary for similarity score calculations.

The window-based template matching technique, along with the described performance enhancements,

proved to be an efficient and accurate method for user localization. However, it encountered limitations

when query images lacked windows, which occurred in approximately 10% of cases in our testing settings.

Additionally, it failed to achieve real-time performance with larger pools of remaining candidates. To

address these challenges, we first applied the matchTemplate function from OpenCV when query images

did not contain windows. Although this method did not perform as robustly with image distortions, it was

sufficient for the small number of affected cases, improving overall accuracy from 90% to 97% in

scenarios with the worst image distortion. To enhance real-time performance, we employed

ThreadPoolExecutor to execute template matching asynchronously, enabling us to identify and localize

the correct facade in sufficient time with larger pools of remaining candidates. Table 3 displays the

computation times for the user localization using different sizes of training image sets. For each training

set size, user localization was computed individually for all 556 query images. Table 3 shows the slowest,

fastest, and average execution times.

https://docs.opencv.org/4.x/de/da9/tutorial_template_matching.html
https://docs.python.org/3/library/concurrent.futures.html#threadpoolexecutor

11

Training image set size Average execution time Fastest execution time Slowest execution time

139 741 ms 365 ms 1329 ms

60 328 ms 149 ms 581 ms

40 213 ms 115 ms 368 ms

20 114 ms 62 ms 216 ms

Table 3: Execution times for user localization using different sizes of training image sets.

3. Results

3.1 Cropped Images

We tested the algorithm on cropped images. The evaluation metrics we measured for the hierarchical

filtering are given in Table 4. The “total filtered column” represents the portion of the full dataset that has

been excluded by this filter. The value depends on the order in which filters are applied, as the same image

may be excluded by multiple filters. We can observe that hierarchical filtering is effective at reducing the

number of candidates for user localization. The accuracy is measured as the proportion of trials in which

the correct label was among the set of remaining candidates.

Filter Total filtered Avg. execution time (of total) Accuracy

Number of stories 12.05% 1.4ms (0.23%) 100%

Feature counts 37,00% 0.8ms (0.13%) 100%

Wall color 5.15% 3.2ms (0.51%) 99.82%

Door color 2.45% 1.5ms (0.43%) 96.58%

Text match 1.89% 35ms (5.54%) 97.48%

Roof shape 7.7% 13ms (1.94%) 96.76%

Texture 8.33% 414ms (63.64%) 94.06%

Total 74.57% 480ms (72.42%) 84.71%

Table 4. Evaluation of hierarchical filtering for cropped image as query image.

The user localization accuracy was 100%, which was expected as it is based on template matching. This

indicates that errors were caused by the correct label being filtered out during the hierarchical filtering

process. Consequently, the accuracy of the full algorithm is 84.71%. The average execution time for user

localization was 182 milliseconds (27.58% of total runtime). This suggests that running most of the filters

can improve performance. The execution time for the full algorithm was also quite consistent as shown in

Figure 7.

Figure 7: Distribution of Execution time of full algorithm

12

3.2 Distorted Images

To test our system’s robustness, we test the hierarchical filtering on distorted images. The detail results

of individual filters and overall algorithm are given in Table 5 and Table 6 respectively.

Filter
Name

Filter Method

Total

Filtered

Total Execution

Time (s)

Correctly

Filtered

Average

Execution Time

(ms)

Accuracy (%)

Stories

Original 9315 0.9425 9315 1.6952 100.00

Image Rotation 9315 1.0428 9315 1.8755 100.00

Image Stretching 9315 0.8473 9315 1.5239 100.00

Image Flattening 422 0.0172 422 0.6158 100.00

Feat

ure

Cou

nt

Original 28592 0.6059 28592 1.0898 100.00

Image Rotation 28592 0.5731 28592 1.0307 100.00

Image Stretching 28592 0.5332 28592 0.9590 100.00

Image Flattening 1466 0.0193 1466 0.6897 100.00

Wall Color

Original 3978 2.9484 3977 5.3029 99.82

Image Rotation 3823 1.8957 3820 3.4096 99.46

Image Stretching 3955 1.6990 3954 3.0558 99.82

Image Flattening 285 0.0616 285 2.2015 100.00

Door Color

Original 1896 2.5452 1877 4.6025 96.58

Image Rotation 1914 1.6161 1894 2.9224 96.40

Image Stretching 1889 1.5733 1870 2.8449 96.58

Image Flattening 83 0.0476 83 1.6988 100.00

Text Match

Original 1457 32.8261 1443 59.5754 97.48

Image Rotation 1380 27.9669 1368 50.7566 97.84

Image Stretching 1466 25.7384 1452 46.7971 97.48

Image Flattening 0 1.0193 0 36.4028 100.00

Roof Shape

Original 5950 10.6079 5932 19.7909 96.76

Image Rotation 7332 11.0885 7252 20.6489 85.61

Image Stretching 5024 8.4395 4971 15.7748 90.47

Image Flattening 218 0.4785 216 17.0901 92.86

Build

ing

Text

ure

Original 6445 259.8596 6412 485.7190 94.06

Image Rotation 8324 237.9636 8272 455.8689 90.65

Image Stretching 8414 221.9311 8361 421.9222 90.47

Image Flattening 446 8.6464 443 308.7997 89.29

Table 5: Filter Performance Details

13

Filter

Method

Total

Filtered

Total

Filtering

Time (s)

Average

Filtering

Time (ms)

Total

Localization

Time (s)

Average

Localization

Time (ms)

Average

Execution

Time (ms)

Correct

Label in

Filtered

Data (%)

Correct

Count

(%)

Original 57633 310.3613 592.2926 182.7388 348.7383 886.8708 84.71 84.71

Image

Rotation

60680 282.1711 568.8934 144.3395 291.0070 767.1054 69.96 69.78

Image

Stretching

58655 260.7857 516.4074 135.1115 267.5476 712.0454 74.82 72.66

Image

Flattening

2920 10.2908 367.5292 7.1095 253.9110 621.4402 82.14 82.14

Table 6: Summary Performance

4. Conclusion
We developed an algorithm for building facade recognition using sematic features. The algorithm was

developed with a primary focus on accuracy, with speed being a secondary consideration. Through

hierarchical filtering we efficiently reduced the search space by applying series of filters based on sematic

features such as the number of stories, features counting, feature color, roof shape, text matching, and

building texture. This approach optimized the speed of our algorithm by reducing the data set for user

viewpoint localizing that was used to find the best match image from the reduced data set.

Our algorithm was evaluated for different scenarios. The results of our algorithm are satisfactory,

achieving high accuracy rates across different scenarios. However, there is still room for improvement

and future work. Improvements can focus on enhancing the text matching procedure, particularly in

situations when building facades have little to no text. Additionally, the algorithm could also be enhanced

to cater to weather and seasonal changes using customized dataset (using Images of same building in

different times of the day and different seasons). Furthermore, real-time performance might be improved

by further refining the user localization algorithm, especially in situations involving larger datasets. In

terms of follow-up work, broadening the dataset to include more varied urban environments and

architectural types might improve the robustness of the algorithm. Incorporating machine learning

methods, like deep learning models, may also make the algorithm more adaptive to changing architectural

elements and environmental variables. Overall, our project lays solid foundations for advances in AR

applications in Urban Environments.

14

5. Grading
Group’s Deliverables Grade: 5

The topic of the project was challenging for us because most of the group members did not have any

previous work experience of computer vision and image processing. The project scope is clearly stated in

the project plan, presentations, and the final report. In the presentations we gave an overview of our

technical plan due to time limitation, the technical details and evaluation of different approaches used in

the projects are discussed thoroughly in the project report. We have not only elaborated the

implementation of our algorithm, but we have also highlighted the technical issues we faced and how we

modified our approach to cater for those issues. In our project report, we have also referenced multiple

online sources, aiding readers in understanding our algorithm. In addition to collaborating with other

group members each group member worked independently on assigned tasks within the scheduled

timeline. All the deliverables are prepared according to the instructions provided. The conclusion of the

project report and the presentations was clear and concise. All the project deliverables are refined and well

formatted.

Group Work Grade: 5

Our group meeting was scheduled every Monday. The meeting was well organized, have a proper agenda.

Each group member shared the details of his/her work of the previous week, the challenges they faced and

set the goal for the coming week. We as a group had analytical discussions and there was no irrelevant

discussion. In our biweekly meeting with the client all of us presented our work. We had a clear goal and

each of us worked on individual tasks that contributed to achieving that goal.

The group environment was quite interactive; group members took responsibility for their individual tasks

and responsibilities were fairly assigned. The tasks that needed input from all group members such as

project plan, presentations, and project report were timely completed due to effective collaboration. The

group work enhanced our learning, especially the details of each algorithm provided by the respective

members in our GIT Repository helped in understanding the algorithm.

15

6. Appendix

6.1 Building texture figures

Figure 1 https://aihalapathirana.medium.com

Figure 2 https://scikit-image.org

Figure 3 https://scikit-image.org

https://aihalapathirana.medium.com/understanding-the-local-binary-pattern-lbp-a-powerful-method-for-texture-analysis-in-computer-4fb55b3ed8b8
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_local_binary_pattern.html

16

 Figure 4 Example LBP image from our dataset.

 Figure 5. LBP radius parameter real-world scaling.

6.2 Local Binary Pattern Algorithm

https://scikit-

image.org/docs/stable/auto_examples/features_detection/plot_local_binary_pattern.html

https://en.wikipedia.org/wiki/Local_binary_patterns

https://aihalapathirana.medium.com/understanding-the-local-binary-pattern-lbp-a-powerful-method-

for-texture-analysis-in-computer-4fb55b3ed8b8

https://becominghuman.ai/local-binary-pattern-features-for-texture-classification-d0dfd86ebf29

https://towardsdatascience.com/the-power-of-local-binary-patterns-3134178af1c7

https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_local_binary_pattern.html
https://en.wikipedia.org/wiki/Local_binary_patterns
https://aihalapathirana.medium.com/understanding-the-local-binary-pattern-lbp-a-powerful-method-for-texture-analysis-in-computer-4fb55b3ed8b8
https://aihalapathirana.medium.com/understanding-the-local-binary-pattern-lbp-a-powerful-method-for-texture-analysis-in-computer-4fb55b3ed8b8
https://becominghuman.ai/local-binary-pattern-features-for-texture-classification-d0dfd86ebf29
https://towardsdatascience.com/the-power-of-local-binary-patterns-3134178af1c7

